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Abstract

The hypothesis of “independent averaging” suggested by Corrsin [J. Atmos. Sci. 20 (1963) 115] is generalized for
investigating the influence of turbulent microstructure on the intensity of velocity and temperature fluctuations of
inertial particles. It has been shown that parameters of turbulent motion and heat transfer in a dispersed phase also
depend on dynamic and thermal relaxation times of particles. It is established that amplitudes of velocity and tem-
perature fluctuations of the dispersed phase are expressed in terms of the Eulerian space-time correlation functions
measured in the system of coordinates moving with mean velocity of fluid flow. Association between Lagrangian and
Eulerian turbulent time macroscales of various types of flows was estimated. These parameters were evaluated on the

basis of published experimental data. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Turbulent nonisothermal gas flows laden with par-
ticles or droplets occur in a wide range of technical ap-
plications, for example, in power engineering, chemical
technological processes, and aviation design. They are
also realized in some natural phenomena, such as pol-
lutant transport and precipitation in the atmosphere.

The intensity of turbulent fluctuations in a dispersed
phase is regulated by the dynamic inertia of particles and
by their average velocity relative to the velocity of the
carrier fluid phase. As the velocity drift of phases in-
creases, both the energy of random motion of the par-
ticles, and the coefficient of turbulent diffusion of
dispersed impurity decrease. This well-known effect of
“crossing trajectories” is associated with a decrease in
the contact time of particles with power-containing ed-
dies of velocity fluctuations of the carrier fluid. It has
been extensively investigated experimentally [1,2], by
analytical methods [3-9] and by methods of direct nu-
merical simulation (DNS) [10-12].
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In the absence of steady velocity drift between the
phases, as the dynamic relaxation time of particles in-
creases, the energy of random motion of dispersed im-
purity decreases. At the same time, in accordance with a
well-known statement of Chen (see, for instance, [13])
the coefficient of turbulent diffusion of particles (without
allowance for the effect of “crossing trajectories’’) does
not depend on particles inertia and is equal to the co-
efficient of turbulent diffusion of a passive (inertia less)
substance. Also it was shown in papers by Reeks [6],
Squires and Eaton [11], Pismen and Nir [14], that the
stationary coefficient of turbulent diffusion of inertial
particle is larger than the coefficient of turbulent diffu-
sion of the passive substance. This behavior of the tur-
bulent diffusivity of particles can be explained by the fact
that the magnitudes of Lagrangian and Eulerian integral
turbulent macroscales determined in a system of coor-
dinates moving with the mean velocity of fluid flow are
different [15].

The Lagrangian and Eulerian correlation functions
differ fundamentally in the procedures for their deter-
mination. Both correlations are obtained by the method
of averaging over an ensemble of realizations. The La-
grangian time correlation function the averaged product
of instantaneous particle velocity components along
their own trajectories. The Lagrangian time correlation
functions reflect individual properties of the particles.
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Nomenclature P, By ratio between Lagrangian and Eulerian
time macroscales of correlation functions
Cx, Cp Kolmogorov and Batchelor constants of velocity and temperature fluctuations
Cp coefficient of hydraulic resistance of Iy, Ty integral Lagrangian time scales of
particles correlation functions of velocity and
Cp, Cg heat capacities of the materials of particles temperature fluctuations of particles
and fluid phase, (J kg™' K™') velocity (s)
DY, D; turbulent diffusion coefficient of inertial A(x) Heaviside stepwise function
particles and passive substance (m? s7!) OE, ¢ turbulent structural parameters
d, diameter of particles (m) characterizing velocity and temperature of
E;(Y,&) Eulerian correlation functions of velocity fluid phase 6, = uTg/Lg, dp = uTy/Ly
fluctuations of carrier phase (m? s2) & turbulent dissipation rate of velocity
Eo(Y,&) Eulerian correlation function of fluctuation (m? s73)
temperature fluctuations of carrier phase ) turbulent dissipation rate of temperature
(K?) fluctuation (K* s™')
Eij(k, &) Fourier transformation of Eulerian { ratio between the temperature and
velocity correlation functions (m? s72) dynamic relaxation times of particles,
E()(k, &) Fourier transformation of Eulerian { =19/,
temperature correlation functions 6y, 0, actual temperatures of carrier phase and
(K* m) particles (K)
Jiis fo response functions of particles to turbulent O, average temperature of fluid phase (K)
fluctuation of velocity and temperature of O, 0, temperature fluctuations of carrier phase
fluid phase and particles (K)
G, probability density function of particles A Taylor space microscale (m)
transition v kinematic viscosity of fluid phase
k vector in the space of wave numbers (m~!) (m? s71)
Lg, Ly integral Eulerian space macroscales of Pps Pa densities of particles and fluid phase
velocity and temperature fluctuation material (kg m"3)
functions (m) gji average squared velocity fluctuations of
Nu Nusselt number particles (m? s72)
Pr Prandtl number of fluid phase TK Kolmogorov time microscale (s)
R, radius-vector of a particle (m) Ty, To times of dynamic and temperature
Re, particle Reynolds number relaxation of particles (s)
Te, Ty Eulerian integral time macroscales of D, Dy Lagrangian correlation functions for
velocity and temperature fluctuations (m) velocity and temperature fluctuations of
TL T Lagrangian integral time macroscales of particles
velocity and temperature fluctuations (s) o(v) probability density function of particles
e integral time scales of correlation velocity fluctuations (m s7!)
functions of velocity and temperature 2 ratio between the amplitude of velocity
fluctuations of carrier phase along the fluctuations and averaged flow velocity,
trajectories of particle (s) x=u/U
U actual velocity of the fluid phase (m s7!) Vi, Wy Eulerian correlation functions for velocity
U, average velocity of fluid flow (m s ~!) and temperature fluctuations of fluid
u velocity of fluid phase fluctuations phase
(ms™) Yrowh  correlation functions for wvelocity and
Ve actual velocity of a particle (m s™') temperature fluctuations of carrier phase
vy fluctuation velocity of a particle (m s7!) along a particle trajectory
w sedimentation velocity of a particle v Lagrangian correlation function of
(ms™) velocity fluctuation of passive substance
X, random displacements of a particle (m) Qp parameter of particle inertia, Qp = 1,/
o ratio between sedimentation velocity of WE, Wy frequencies of velocity and temperature
particles and r.m.s. fluid velocity, « = W /u fluctuations in the Eulerian variables (s™')
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The Eulerian correlation functions are determined at a
fixed point of space. They can be measured in the system
of coordinates connected with the mean fluid velocity of
the flow, or in a fixed “laboratory” system of coordi-
nates. In the calculation of the integral time scale of
Eulerian correlation functions, the products of the ran-
dom velocity components of the fluid at a fixed point of
space are averaged. Space-time Eulerian correlation
functions give the presentation about the collective
random behavior of the ensemble of fluid phase micro-
particles passing trough the fixed point of space.

The coefficient of turbulent diffusion of a passive
substance is determined by the Lagrangian correlation
functions. In the case of inertial particles, however, the
parameters of turbulence of the carrier phase along a
particle trajectory are combined with both Lagrangian
and Eulerian correlation functions.

Intensive theoretical studies were carried out by an-
alytical methods [16-21] and by DNS methods [22,23] to
determine a relation between Lagrangian and Eulerian
correlation functions. There are also some experimental
papers, for instance, Sato and Yamamoto [24] and ex-
perimental data collected in the paper of Middleton [21]
on the subject of study. It was found that the Lagran-
gian time integral macroscale is less than the Eulerian
time integral macroscale in the system of coordinates
joined with the average velocity of the fluid flow.

This result can be physically interpreted as follows.
The random velocity field in the fixed point of space (the
Eulerian variables) is an agglomeration of the collective
correlated non-local interaction in the surrounding fluid.
The effect of non-local interaction in the turbulent
velocity field is the result of pressure fluctuations. If the
labeled particle (in Lagrangian variables) moves in the
fluid, the correlation of velocity fluctuations of the in-
dividual particle (along its trajectory) in this random
field breaks down [20].

The theoretical investigations of the relationship
between Lagrangian and Eulerian macroscales and
turbulent diffusivity of passive substance [18,25-27] are
based on the hypothesis “of independent averaging”
suggested by Corrsin [28]. Within the framework of
this hypothesis it is proposed to perform averaging of
the probability density function of the particle transi-
tion independently from the Eulerian two-point
(space-time) velocity correlation functions. The argu-
ments for the hypothesis of independent averaging are
based on some modern concepts of the turbulence
microstructure and the data of DNS and experiments.
It is worthwhile to note, that the above investigation
results are limited to the case of homogeneous iso-
tropic turbulence.

It was found in experimental papers by Sato and
Yamamoto [24] and Krasheninnikov and Secundov [29]
that the relation between Lagrangian and Eulerian space
and time macroscales is determined by the type of tur-

bulent flow in question. In this connection, it is
necessary to expect direct relationship between param-
eters of particle random motion and microstructure of
turbulence of the flow.

The intensity of temperature fluctuations of particles
is determined by both particle dynamic and thermal
relaxation times. The latter is connected with thermo
physical properties of material of dispersed and fluid
phases. The DNS method used by Jaberi [30] illustrates
that the temperature fluctuations of particles depend on
their inertia and microstructure of turbulent tempera-
ture fluctuations of the carrier fluid.

Modern theoretical papers devoted to the determi-
nation of the intensity of turbulent velocity and tem-
perature fluctuations of particles typically used a
simplified approach. This approximation is based on
employing only one time macroscale of turbulence
(Lagrangian or Eulerian) (see for instance, [31]). Since
these scales are essentially different in magnitude, the
calculations performed by using such an approach may
result in significant errors.

In the present paper, the Corrsin’s hypothesis “of
independent averaging” is generalized to velocity and
temperature fluctuations of inertial particles. Closure
expressions are presented for the inertial particles La-
grangian correlation functions through the Eulerian
velocity and temperature correlation functions of the
carrier fluid. Some integral parameters depending on the
flow microstructure are determined from experimental
data obtained for various types of flows. It has been
found that the intensity of random motion and heat
transfer in the dispersed phase is related to the dynamic
and thermal inertia of particles and to the structure of
the flow.

2. Particle velocity and temperature fluctuations

We consider particles of spherical shape, and with
size smaller than the Kolmogorov space turbulence mi-
croscale. This situation may be realized in a gas flow
with particles or droplets. In the equation of particles
motion we take into account only viscous drag and
gravity
L) 0RO = )+ W), = F ()
The coefficient of heat conductivity of the particle ma-
terial exceeds the coefficient of heat conductivity of the
carrier fluid. Therefore, temperature distribution over
the volume of the particle is assumed to be uniform. In
this situation, the equation of heat transfer for the
particles has the following form:

d@d_pt(t) 6 [O:(R,(2),1) — O, (2)]. )
To
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The dynamic and thermal relaxation times of the par-
ticles 7, and 1y depend on the relative velocity between
the particles and fluid phase.

In the following we analyze a statistically stationary
and homogeneous turbulent flow of the carrier phase.
It is assumed that the residence time of particles in the
flow considerably exceeds the integral time scale of
turbulence, and both the dynamic and thermal relax-
ation times of particles ¢ >> (Tg,t,,79). After the pro-
cedure of averaging over an ensemble of turbulent
realizations we separate average and fluctuating com-
ponents of velocity and temperature of fluid and par-
ticles

U(x,t) = Uy + u(x,t), Or(x,t) = Oy + 0(x,1),

Vo) = U+ W +w,(1),  Oy(1) = B0 + 0p(1).

The statistical characteristics of the dispersed phase are
described by correlation functions of velocity @;(s) and
temperature ®y(s) fluctuations of particles along their
own trajectories. We name these correlations also as
Lagrangian correlation functions of particles

(0 (00t + 5)) = (v3) Pa(s), 3)

(0p()0,(t +5)) = (0,) Do s)- 4)

Here and below repeated indexes do not mean summa-
tion.

The following expressions for Lagrangian correlation
functions of the particles follow from the equations of
motion and heat transfer (1) and (2):

/dslexp( 1_91)
/dszexp( 2_S2>

X (u: p(81),81); (Rp(sz) 52))

= rz / ds; exp( )
></ dszexp(—g)‘l’g(shsz),
0 u

5)
00y = % | "as aw (-2 | g5

t p—
X exp <f 2 w”) (0c(Ry(51),51)0r

x( 2).52)
oo (-27)

></0 dszexp<f Z)Y/E(sl,sz). (6)

(v (t1)vpi(12))

Here velocity and temperature correlation functions of
carrier phase along the particle trajectory are expressed
in terms of the Eulerian correlation functions

<u?>'PZ~(S1,S2) = /dxl /dxz(ui(xl,sl)ui(xz,sz)
X (X1 — Rp(51))0(x2 — Rp(s2))),  (7)

(02)PP (s1,57) = /dxl/dxz(Gf(xl,sl)Gf(xz,sz)
x 0(x1 — Rp(s1))0(x2 — Ry(s2))).  (8)

In the case of homogeneous turbulent flow, correlations
(7) and (8) are approximated by statistically stationary
random processes

Pi(s1,82) = PR(E), Phls1,9) = Pp(&) (&= Is1 —sal).
)

As a result of some calculations, taking into account the
Egs. (5)-(8) with regard to statistical stationarity as-
sumption (9), we receive expressions for functions of
velocity and temperature fluctuations of particles along
their own trajectories (Lagrangian correlations for par-
ticles)

<Upi(t)vpi(t+s)> = <U;i>q)ii(s)
(wd) [~ |s+ ¢l
T, /0 {exp(
+exp(— Is = 5‘)} pEydeE, (10)
(0p(1)05(t + 5)) = (02) By (s)
(67)

Note that formulas (10) and (11) are valid for large
residence times of the dispersed phase in the flow
t > (Tg, 14, 70), When fluctuations of the parameters of
the fluid phase at the particles trajectories may be rep-
resented as a statistically stationary random process.

It is seen from Egs. (10) and (11), that Lagrangian
correlation functions of particles decrease exponentially
as the relative time increases s — o0o: @;;(s) &~ exp(—s/t,)
and ®y(s) =~ exp(—s/19). As s = 0 expressions (10) and
(11) result in formulas for the intensities of velocity and
temperature fluctuations of the dispersed phase

== e (-S)moa 0

u u

<0§>:<(’_%>/0°o exp(—§0>wg(5)dzs. (13)



LV. Derevich | International Journal of Heat and Mass Transfer 44 (2001) 4505-4521 4509

It is seen from Egs. (12) and (13) that for inertial par-
ticles t,, 79 > Tg amplitudes of velocity and temperature
fluctuations of particles are proportional to corre-
sponding ratios between relaxation times of particles
and the integral temporal macroscales of velocity and
temperature fluctuations of carrier phase along the
particle trajectories

m- [Twed n- [ me (14
0 0

(©7) o< () T2 /s (05) = (0T /0. (15)

3. Time scales of fluid velocity and temperature correla-
tion functions

The following expressions for relations between
Lagrangian integral time scales of particles and the time
scales of functions of velocity and temperature fluctua-
tions of the carrier phase along the particle trajectory
may be obtained after integration of Eqs. (10) and

(11):

o= [ " () ds = () (), (16)

ro= [ ouods = @67 (7

For inertial particles with t,,79 > Tg, as determined
from (15), integral time scales of Lagrangian correlation
functions of velocity and temperature fluctuations of
particles tend to the corresponding relaxation times of
the particles I'; « 7, I'y 1.

Consider in greater detail the correlations of the
function of fluid phase velocity fluctuations along the
particle trajectory (7). The behavior of temperature
correlation function of fluid phase at the particles tra-
jectories is similar.

An essential way to study dispersed phase response
functions of turbulence fluctuations of the carrier fluid is
based on the analysis of statistical flow parameters in the
coordinate frame moving with the carrier phase aver-
aged velocity. For a statistically stationary homo-
geneous turbulence, expression (7) can be written in the
following form:

WhHWwi(é) = /(u[(x, Nui(x + Y, 1+ &)o(Y — Ry(£)))dY
= /(ui(x7 Nu(x+ Y, 1+ &)G,(Y,¢))dY,

where function G,(Y,¢) =06(Y — R,(£)) is an instan-
taneous probability density function of particle transi-
tion on the distance Y during time interval & (in the
moving system of coordinates).

Due to particle inertia, this function is connected
with the more general probability density transition
function G,(Y,&|vy) that depends on the particle initial
velocity v at the initial time & =0

Gy (Y, E|vy) =03 Y —1,m {1 —exp<—£>] _il/,V/

Tu

1

_/Oids {1 —exp (_5;5)}4(1%(@@)

1

Expression (18) takes into account particle inertial mo-
tion with initial velocity of particle (I), displacement due
to the particle average relative velocity (II) (in the
moving system of coordinates), and turbulent transition
with velocity fluctuation of carrier phase (III). The de-
tailed derivation of formula (18) is provided in Appen-
dix A.

The random motion of particles with dynamic re-
laxation time 7, o< Tg is determined by integral action of
the macroscale structure of turbulence and depends
slightly on small-scale (high-frequency) velocity fluctu-
ations of the fluid phase. In this case, one can generalize
the hypothesis of “independent averaging” by Corrsin
[28] for flow and heat transfer of inertial particles. Fol-
lowing the assumption of independent averaging be-
tween the Eulerian correlation functions of velocity and
temperature fluctuations of fluid phase and probability
density transition function of particles, one can write
following expressions:

(2P () = / dyy / Y p(v0) Es(Y, &) (Gy(Y El)),
(19)

@0 = [an [ dYo(mE(Y. GV, )
(20)
where Eulerian correlation functions of velocity and
temperature fluctuations of the fluid phase in (19)
and (20) are determined in the system of coordinates

driven together with the average velocity of the carrier
phase

E,-j(Y7 é) = (u,-(xl,sl)uj(x2,sz)),
Eo(Y, &) = (Or(x1,51) 0 (x2,52)),

Y =x; —x,¢& =51 — 5,
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where the probability density function of the distribu-
tion of velocity fluctuations of particles has the Gaussian
form

3 ~1/2 U,?
o(v) = Q(ZTEG”») / exp (— E), g = (vﬁl). (21)
Note that Corrsin’s hypothesis [28] is widely used for the
analysis of turbulent diffusion of passive substances (for
example, [16,17,19-21,25,27]). Therefore, the equations
presented below for less inertial particles with 7, < Tg
are a reasonable estimation for statistical parameters of
the dispersed phase.

It is convenient to investigate the effect of the tur-
bulent microstructure on the random velocity and tem-
perature fluctuations of the dispersed phase by using the
following spectral representation:

E;(Y,&) = /E,,(k, &) exp(—ik - Y)dk, (22)

Ey(Y, &) = / Ey(k, &) exp(—ik - Y)dk. (23)

Using Eqgs. (18)-(23), we obtain the following expres-
sions for correlation functions of velocity and tempera-
ture fluctuations of the carrier phase along a particle
trajectory:

W90 = [ Buthcyenp (—i - 3E(43) ) ak
(4)

(02)Ph(&) = /Eg(k, &)exp < — ik, W, & f%k3</15(5)>) dk,
(25)

where a summation on index # in the exponential terms
is applied.

() = a1 - exp (5>]2+ @) o)

Tu

(2(2)) = <u5>{2 Og ds(é — 5) ¥ (s)

_T“/o ds{l—exp(—if_us)}
X {Z—exp(—:—u) +exp (—%)}TEH(AV)},

(27)

where term (A%(£)) is a squared particle displacement
due to inertial travel (I) and turbulent transfer with
energy containing eddies (II).

The detailed derivation of expressions (24)—(27) is
given in Appendix B. The exponential factor in (24) and

(25) takes into account effects of the average velocity
drift between phases and the contribution of turbulent
fluid internal microstructure on the random motion and
heat transfer in the dispersed phase. From Eq. (14) it is
clear, that the characteristic scale of variation of the
variable ¢ for correlation function in (27) is of the order
of the integral time scale 7" .

It follows from (27) that the squared displacement of
inertialess particles (t, — 0) without any average
velocity drift (W = 0) is equal to the squared displace-
ment of a passive substance:

o) =208 [ (-9 (s) ds.

Here the function ¥; (s) is equal to the Lagrangian
correlation function of velocity fluctuations of a passive
substance, at 7, — 0. The Egs. (24) and (25) approxi-
mately describe a relation between the Lagrangian cor-
relation function of velocity and temperature
fluctuations of microparticles of the fluid medium and
the corresponding space-time Eulerian correlation
functions.

For inertial particles 7, > TP the squared displace-
ment of particles decreases (A2) ~ (u2)(TF)’ /z,. In this
case, if there is no average velocity drift of phases, as is
obvious from Egs. (24)—(27), the correlation functions of
velocity and temperature fluctuations along the trajec-
tory of particle are close to the corresponding space—
time Eulerian correlation functions.

Formulas (7), (8), (10), (11) and (24)—(27) describe, in
a closed form, turbulence of particles taking into ac-
count their dynamic and thermal inertia, relative vel-
ocity between phases, and the microstructure of the
flow. Expression for velocity and temperature correla-
tion functions of the carrier phase along the particle
trajectory in (24) and (25) can be obtained in the closed
form by approximation of the integrals in (27). For this
purpose we used in (27) a simple approximation for
velocity correlation function of carrier phase along the
particle trajectory
P (s) = A(T}, —9). (28)
After substitution (28) in expression (27) we find for
(A2(TP)) the following expression:

) =ou [t —ew (- 3]+ {2

u

NEIaE)
o E) (e )

Note that the time scale of velocity fluctuations of the
fluid phase on the particle trajectory 7P depends in a
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self-consistent way on the Eulerian correlation functions
in (24) and (25) and takes into account particle inertia
and velocity drift between phases.

The response functions of particles to temperature
fluctuations on the carrier phase is determined not only
by the time of their dynamic relaxation, but also by the
ratio between heat capacity values of the material of
particles and fluid phase, as well by the Prandtl number
of the carrier phase (see Appendix C). An increase in
thermal inertia of particles leads to a weaker dependence
of temperature fluctuations of particles on the micro-
structure of turbulence. To take into account this effect,
the scale of variation of the variable ¢ in (26) for the
thermal fluctuation (25) is approximated by the quantity
Ty (Iun/Tp). An increase in the time of thermal relax-
ation of particles causes an increase in the Lagrangian
timescale of temperature fluctuations of particles I'y and,
as a result, a decrease in the contribution of small-scale
fluctuations of carrier phase. In this case, if expression
(29) is used for calculating the temperature correlation
functions in (26), the parameter 7P is replaced by
T; 5 (F rm/ I 0)'

4. Approximation of Eulerian correlation functions

For further analysis we approximate the space-time
Eulerian correlation functions of velocity and tempera-
ture fluctuations of the fluid (in the system of coordi-
nates moving with the averaged fluid velocity) in the
following form:

. 16 & ki,
Ey(k,s) = (uju;) ek <5,;,- - ﬁ)

xexp[Z(l:;)z(w;S)z} (30)
o= () o () 5]
K = kik;. (31)

The functions (30) and (31) are satisfied to the following
normalization conditions:

/E,.,.(k, 0)dk = (uu,), /Eg(k, 0)dk = (07).

The integral space and time scales of the distributions
(30) and (31) are determined as

Le = (2n) fhke, Ty = (n/2)"* /g,

L() = (27[)1/2/]((), TE = (7[/2)1/2/60(}.

The choice of functions in the form of (30) and (31)
makes it possible to obtain analytical formulas. This
simplifies further analysis considerably.

It should be noted that the spectral functions (30)
and (31) do not reflect distribution of intensity of ve-
locity and temperature fluctuations in the inertial and
inertial-convective regions of the turbulent spectra.
However, the distributions (30) and (31) approximate
well the behavior of velocity and temperature fluctua-
tions in the power-containing part of the spectra (see, for
instance, [32,33]).

Substituting (30) and (31) into Egs. (24) and (25), we
find expressions for the correlation functions of velocity
and temperature fluctuations of the fluid phase along the
trajectory of a particle taking into account the relative
velocity between phases (W; = W)

2 ¢2 272

Py _ -l —4 ¢ Wkg
lPll(g) =M1, eXp |: 2 (1 +4w2]377% ’ (32)

pp (f) ’12 W252k2

ph (&) = =2 {lJr—z(lf E)], 33
22() 2 '/I% 417% ( )

2 g2 212

W=k
PP(E) = 12 A 0 4
O(Q) By iy exp{ 2 +4w5,u% ) (3 )

w= 1)L, 2 =1+r(a)/QL),  (35)

where coordinate axis i = 1 is directed along, and axis
i =2 transverse to; the average velocity drift between
phases.

For velocity correlation functions, formulas (32) and
(33) are similar to those found earlier in [9]. It is seen
from expressions (32)-(34) that increase in the drift
velocity of phases causes an intensive decay of the cor-
relation functions of velocity and temperature fluctua-
tions of carrier phase along the particle trajectory (the
effect of ““crossing trajectories”).

Using formulas (16), (17) and (32)-(34) we determine
the time macroscales of functions of velocity and tem-
perature fluctuations of fluid phase along the particle
trajectory

T w2
yr—— 1+( E) 7 36
! ’11’73‘|i Lgn, (36)

-1

TP n? W\’
="l 4+2 1+( ) , 37
n=" = Iom (37)

—1/2

T, W T\ >
P =—"2 1+< > . 38
0 #1#%[ Lop, (38)

In the calculation of the intensity of fluctuations of
dispersed phase parameters (12) and (13), the corre-
sponding correlation function of the fluid velocity fluc-
tuations along the particle trajectory is approximated by



4512 LV. Derevich | International Journal of Heat and Mass Transfer 44 (2001) 4505-4521

formula (28). The analogous form approximates the
correlation function of temperature fluctuations of the
fluid along the particle trajectory ¥} (s) = A(T} —s). As
a result, we find response functions of particles on ve-
locity and temperature fluctuations of carrier phase

(o) = fulul), (02) = fo(6F),

2 Y |
ﬁ,:l—exp(—;) —l—exp{— <7E>Q—E}, (39)

fg:lfexp<fT—g)
To
v 1
e[ (5)()ag) <4°>

QE = Tu/TE> (: = T(*)/Tzu

where Qp is a non-dimensional parameter representing
the particle inertia.

The following relation between the functions de-
scribing the degree of entrainment of particles into the
turbulent velocity and temperature fluctuations of the
carrier fluid follow from (39) and (40):

fo=1— (1= fi)W/Em0, (41)

If the integral scales of velocity and temperature fluc-
tuations of the fluid along trajectory of the particle are
equal (7} = T7), expression (41) is similar to that ob-
tained earlier in [34]. It is seen from (41) that an increase
of parameter { causes a decrease in the intensity of
temperature fluctuations of inertial particles. For in-
ertialess particles 7,,79 — 0, in the absence of average
velocity drift (W = 0), an estimation of ratio between
Lagrangian and Eulerian time scales of a passive sub-
stance versus the integral structural parameters of the
flow follows from (36)—(38):

Bo=Tr/Te = (L+m/2)7", (42)

Bo = T()L/To =(1+ 7ry?,/2)*3/27 ()

where y,, 7, are integral structural parameters of tur-
bulent flow

Yu = uTuL/LE7 Yo = uTGL/L() (44)

and TF, T} are integral Lagrangian time scales of
velocity and temperature fluctuations of the passive
substance.

It is obvious, from formulas (42)—(44), that integral
Lagrangian time macroscales are always less than the
corresponding Eulerian time macroscales determined in
the system of coordinates linked with the mean velocity
of fluid flow.

The following relations between the integral scales
and structural parameters for the Eulerian and

Lagrangian correlation functions follows from (42)—
(44):

Oy =uTe/Lg =7v,/B,, 09 =uTy/Lo=7,/By- (45)

From Egs. (16), (17) and (39), (40) we carry out the
expressions for integral Lagrangian scales of velocity
and temperature fluctuations of particles

ro=17/[1 —exp(~T} /3],
Iy = T7/[1 — exp(~ T} /). (46)

This relation shows that Lagrangian time scales of
velocity and temperature fluctuations of particles with
small inertia 7, < Tg, 19 < Ty coincide with the La-
grangian time scales of a passive substance. For particles
with high inertia (t, > Tg, 19 > T)) the Lagrangian time
scales of particles are close to the timescales of their
dynamic and thermal relaxation. An increase in the av-
eraged relative velocity of the dispersed phase also leads
to the conclusion that the Lagrangian time scales of
particles tend to their relaxation times.

Estimates of integral parameters of the Eulerian
correlation functions in (30) and (31) are necessary to
perform numerical calculation of this equation. An
analysis of the relation between the integral scales of
velocity and temperature fluctuations based on the more
accurate spectral von Karman representation is given in
Appendix D.

5. Turbulent diffusion coefficient of inertial particles

The intensity of diffusion of a substance in a turbu-
lent flow is characterized by the averaged value of the
product of actual displacement of particles

o) = [ s [ dslontsion(s)

The definition of the turbulent diffusion coefficient of the
substance was given by Taylor [37]

D = 2 d (X () Xpi(1)) = /0 (vpi(t)vp(t +5)) ds. (47)

If inequality ¢ > (T, t,,79) is satisfied, then the energy
of random motion and the coefficient of turbulent dif-
fusion of particles achieve the stationary values. The
coefficient of turbulent diffusion of the dispersed phase
can be expressed in terms of energy of random motion of
particles and turbulent energy of the carrier phase with
the help of Egs. (3), (12), (14)

Dj = Fii<l712)i> = TP (u7). (48)

At 7, — 0 Eq. (48) yields the expression for the coef-
ficient of turbulent diffusion of a passive substance

D = T, (i) (49)
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The following formula for the ratio between coeflicients
of turbulent diffusion of the dispersed phase and the
passive substance is obtained from (36), (37), (48), and
(49)

DY/D; = B,' TP [ Tg. (50)

For inertial particles 7, > Tz in Egs. (34) and (35)
parameters (A;) — 0, n, — 1, and in absence of any
velocity drift between phases 7} — Ti. In this case the
coefficient of turbulent diffusion of the dispersed phase
reaches a maximum value, which exceeds the coefficient
of turbulent diffusion of the passive substance
Dg/Dmmax = ﬁ;l > L.

It is seen from (36), (37) and (50) that an increase in the
averaged relative velocity between phases leads to the
decrease in the time scale of velocity fluctuation func-
tions of carrier phase along the particle trajectory.
Hence, it causes a decrease of the coefficient of turbulent
diffusivity of dispersed phase (effect of “crossing trajec-
tories”).

If the integral Lagrangian and Eulerian time scales
are equal, f,=1 (for ;=1 and W =0 we have
TP = Tg), then the turbulent diffusion coefficients of
dispersed and carrier phases are equal. This is in
agreement with so-called Chen’s theorem (for reference
see [13]). In this case the dependence of turbulent dif-
fusion coefficient of dispersed phase on the relative drift
between phases coincides, as seen from Eq. (36), with the
well-known Csanady’s formula (see [4])

D}/D; = [+ (W fu) (uTe/Le)'] " = [+ (a8,)].

6. Eulerian correlation functions in various system of
coordinates

Going from a system of coordinates moving with the
mean flow velocity U, into a “laboratory” (fixed) system
of coordinates we used the Galilean transformation

U'(x,t) = U(x + Uyt t) — U,.

Here primed parameters are in the “laboratory’ system
of coordinates, and nonprimed parameters are in the
moving system of coordinates.

The turbulent space-time Eulerian correlation func-
tion of velocity fluctuations of the fluid phase in the
“laboratory” system of coordinates has the following
form:

E(x1, x5 11, 0) = (i (1, 01)uj(x2, 1))

= <M,-(X1 + U()l‘],f])M[(XZ + U0t27l2)>.

This expression is simplified for homogeneous and
stationary turbulent flow as follows:

(u;(x) + Uoty, t)u;(x2 + Uotr, 1)) = Ey(Y + Up&; &),
é: |l] - tz|. (51)

Y:xl_x27

The Fourier transformation of expression (51) gives
E;(Y, é) = Eij(Y + U067 é)

= /E,,.(k, &) exp|—ik - (Y + Uy¢)| dk.

The one-point (¥ = 0) Eulerian correlation function of
velocity fluctuations in the “laboratory’ system of co-
ordinates has the following form:

E0.6) = [ Bk, &) exp(-ik - Ung) dk (52)

Note, that expression (52) is similar to formula (24) for
(A2) = 0. Approximating Eulerian correlation func-
tions in the system of coordinates linked with the mean
fluid flow by expression (30), the following expression
for the ratio between Eulerian time scales in the mov-
ing and fixed systems of coordinates from (51) can be
obtained:

—1/2

2
Lﬁ;: 14 UpTg _
Tk Lg

where y is the ratio between the amplitude of velocity
fluctuations and the mean fluid flow velocity.

Formula (53) is written for velocity fluctuations that
are parallel to the mean flow velocity of carrier phase.

Formulas (42)—(45) and (53) can serve as estimation
of integral Lagrangian and Eulerian time scales in var-
ious systems of coordinates.

The so-called Taylor’s hypothesis of “frozen turbu-
lence” was used by Shraiber at al. [31] to estimate the
ratio between the Lagrangian and Eulerian time scales in
the system of coordinates of the flow

—1)2

(@] e
X b X U07

(53)

For significant averaged velocity of fluid flow, from (53)
and (54) we receive the following estimation of the ratio
f, between time scales

1L

<1, p,=-:E 55
p T (55)

Ty Lg
T UpTg

7. Results of calculation

Some experimental data will be used to estimate the
ratio between the Lagrangian and Eulerian time scales
p, for various types of flow. Ratios between Eulerian
time scales Ti /T, for several flows versus the degree of
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turbulence y were measured in [29]. These experimental
data (1)—(5) are presented in Fig. 1(a). Some exper-
imental data for the parameter y, in the case of iso-

LV. Derevich | International Journal of Heat and Mass Transfer 44 (2001) 4505-4521

tropic turbulent flow behind a grid were presented in
[24] (the points (6) on Fig. 1(c) is original experimental
data). The initial experimental data and the results of a

1-5 calculations results
(c) 6 - exp.data: Sato & Yamamoto (1987) (d)

Bu

_Q_e_\%— o-1 0 -2
0.1p ) A -3 v -4

o -5
K -1
10 10 x
(e) 1 -5 calculations results (model Shraiber et al., 1987)

Fig. 1. The ratio between Lagrangian and Eulerian time scales and the structural parameters of turbulence versus the intensity of
turbulence for various types of flows in the fixed “laboratory” system and in the system of coordinates connected with the mean
velocity of the flow (a)—(d). Calculation of the ratio between the Lagrangian and Eulerian time scales by using the hypothesis of “frozen
turbulence” [31] (e). Dots 1-5 on the figure (a) represent the experimental data by Krashenninnikov and Secundov [29]: 1 — turbulent
wake behind a cylinder; 2 — mixing zone; 3 — surface atmospheric mixing layer; 4 — tube flow; 5 — the bulk flow in a turbulent jet. Dots 6
in the figure (b) show the results of calculation using experimental data by Sato and Yamamoto [24] for isotropic turbulent flow after a
grid. Points 6 in the Fig. 1(c) represent the experimental data by Sato and Yamamoto [24]. In the other figures the dots indicate the
results of calculations. The straight lines represent the results of linear interpolation. (a) the ratio between Eulerian time scales in
moving and laboratory system of coordinates; (b) the ratio between Lagrangian and Eulerian time scales in the system coordinates
moving with mean velocity of the flow; (c) and (d) turbulence structural parameters of velocity fluctuations.
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calculation, by Egs. (42)-(45) and (53), of the ratio
between the Lagrangian and Eulerian times f,, of the
structural parameters y,, f,, and o, and the ratio 7g /Ty,
are presented in Fig. 1. The results of a calculation of
the ratio between Lagrangian and Eulerian time scales
by the method proposed in [31] are shown in Fig. 1(e).
A comparison of Fig. 1(b) and (e) shows a qualitative
and quantitative disagreement between results of the
calculations of f8,. In [31], the ratio between Lagran-
gian and Eulerian time scales in the system of coordi-
nates of the flow can be less as well as much larger
than unity, and vary in a wide range (see Fig. 1(e)).
The results of this paper (Fig. 1(b)) indicate, on the
contrary, that the ratio between Lagrangian and
Eulerian time scales in the system of coordinates of the
flow is always less than unity. In conformity with our
calculations 0.3< 8, <1 for all investigated types of
flow.

With the exception of the experimental data for y,
obtained in [24], which change rapidly as the degree of
turbulence increases, the parameters y,, f,, and J, de-
pend but slightly on the parameter y and are determined
by the type of the flow under study (Fig. 1(c) and (d)).
The effect of the type of the flow on the characteristic
time scales of turbulence can be estimated using the re-
sults of this paper.

A comparison of calculation results with the
experimental data [21] on the effect of structural
parameters 7y, and J, on the ratio between Lagrangian
and Eulerian time scales f3, is presented on the Fig. 2.
The results of the calculations are compared with the
DNS obtained in [30] for the parameters of particles in
homogeneous and isotropic turbulence and with the
results of experiments performed in [1,2]. The calcula-
tion of velocity fluctuations were carried out at
v, ~ 045, B, =~ 0.5. The structural parameters of tem-
perature fluctuations are estimated in accordance to
Appendix D. The parameter of dynamic inertia of
particles Qg, and ratio 7,/tx was found with the help
of Eq. (D.13).

The Fig. 3 illustrates a reduction of turbulent diffu-
sion coefficient of particles with an increase of the av-
erage velocity drift between phases (parameter «). It is
seen that the particles diffusivity in the direction per-
pendicular to the relative particles velocity is less than
that in the longitudinal direction. The experimental data
obtained in [1,2] are for the diffusion of particles in the
direction perpendicular to relative velocity between
phases. It is observed that, as the inertial parameter Qg
of particle inertia increases, at low drift velocities, the
coefficient of turbulent diffusion of the dispersed phase
is larger than the diffusion coefficient of the passive
substance.

The DNS [30] for two-phase turbulence is con-
ducted neglecting influences of velocity drift on the
intensity of random motion of particles. Fig. 4 presents

0.50

0.25

Fig. 2. The ratio between the Lagrangian and Eulerian time
scales f, = T /Tg versus the squared structural parameters.
The dots show the experimental data collected in [21], lines are
calculation results. 1 — the ratio between the Lagrangian and
Eulerian time scales versus the parameter (Si (0, =ulg/Lg); 2 —
the quantity y2(y, = uT"/Lg; 3 — the calculation of the ratio
between the time scales f8, versus the parameter J. obtained in
[21].

s . 1-0,=0.01
Q 2-0. =1
N = 1 E
Q
0.8
0.6
0.4
o2+ / TTe-Tnm=
O g
- Csanady (1963) m}
O " 1 " ! " 1 n 1 L 1 n
0 1 2 3 4 5

Fig. 3. The effect of the phase relative velocity on the turbulent
diffusion coefficient of particles. Dots represent experimental
data from [1,2]. Experimental data correspond to the coefficient
of dispersed phase diffusion in the direction perpendicular to
the velocity drift of phases. The solid lines denote the predic-
tions of diffusion coefficient in the direction perpendicular to
the relative velocity, dashed lines show predictions in the di-
rection parallel to the relative velocity. The dotted—dashed line
represents the Csanady approximation [4].
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l-a=0;2-3;3-5

Fig. 4. Functions that represent the degree of entrainment of
particles into velocity fluctuations of carrier fluid versus the
particles inertia parameter at various drift velocities of phases.
Dots show DNS data by Jaberi [30]. DNS data were obtained
neglecting the averaged velocity drift of phases (« = 0). Lines
denote the calculation results for various «. Solid lines are
calculation results: solid lines — f,, dashed — f5,, dotted—dashed
line indicates the results obtained for approximation 7} = Tg
(formula (36)).

the particles response functions (39) with various values
of the velocity drift coefficient o. An increase in the
drift velocity causes a decrease in the magnitude of
fluctuations of particles. The intensity of turbulent
motion of particles in the direction parallel to the
averaged relative velocity of particles is higher than in
the perpendicular direction. It is noticed that the use of
the Eulerian time scale alone for evaluation of the
amplitude of velocity fluctuations of particles yields
results with considerable errors.

It also clear from Fig. 5 that the results of calcu-
lations of the function describing the relative temper-
ature fluctuations (40) with the use of the Eulerian
time scale alone and taking into account the effect of
microstructure are essentially different. As for velocity
fluctuations, an increase in the velocity drift leads to a
decrease in the magnitude of temperature fluctuations
of particles.

Formula (41) represents the squared amplitude of
temperature fluctuations of particles in terms of the
energy of their random motion. A comparison of the
results of a calculation of the relative intensity of tem-
perature fluctuations f} calculated at T} = 7} with the
DNS data [30] (dots) is shown in Fig. 6. The results of
the calculation using the model, proposed in the present
paper, are shown by the curves. It is seen that when the
multi-scale character of turbulence is taken into account,
the parameters of the particles turbulence are predicted
with a better accuracy.

IF N
;fe ‘ \\\ cp/cf'Pr:l

0-8'E‘1\\ Y l-0=0;2-3;3-5
0.6
0.4
02+

0 " 1 1 1 L T 1

0 0.5 1 1.5 ()

Fig. 5. Function that describes the amplitude of temperature
fluctuations of particles versus the inertia parameter at various
relative velocities of particles. The dots show the data of DNS
by Jaberi [30] at « = 0 and ¢, /c¢Pr = 1. The solid lines denote
calculations by formula (37), the dashed lines obtained with the
help of formula (37) at 7} = Tg.

| O Pr=025 N
o 07 A A
04F A 17
n 1 " 1 n 1 ) 1 n
0 1 2 3 4 /e
prf

Fig. 6. The ratio between the function f; calculated by the
formula (38) (model by Yarin and Hetsroni [34]) for 7} = T}
and function f; (37) at various Prandtl numbers (Qg ~ 0.17.
Dots show the DNS data by Jaberi [30].

8. Conclusions

An analysis of the effects of the microstructure of a
turbulent fluid flow on the intensity of velocity and
temperature fluctuations of particles taking into account
the effect of an average velocity drift between phases,
and the relation between thermophysical properties of
particles and carrier phase materials was made. For this
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purpose, a generalization of the so-called hypothesis of
“independent averaging” proposed by Corrsin in [28]
was used.

It has been shown that the velocity and temperature
correlation functions of the carrier fluid along the tra-
jectory of an inertial particle depend on the Eulerian
space-time correlation functions measured in the system
of coordinates of the fluid flow. For inertialess particles
with zero relative velocity (the case of a passive sub-
stance), the correlation functions along the micro-par-
ticle trajectory coincide with the common Lagrangian
correlation functions of turbulence.

An estimation of some integral parameters of the
turbulent flow structure based on experimental data was
presented. The estimates are related to the type of the
flow under study. They make it possible to take into
account the microstructure of turbulence in calculations
of velocity and temperature fluctuations of particles.

Relations between the time and space integral
parameters of Eulerian correlation functions of velocity
and temperature for homogeneous isotropic flow have
been obtained by using von Karman approximations of
the velocity and temperature fluctuation spectra of the
carrier fluid.

The effects of dynamic and thermal inertia and the
drift velocity of particles on the intensity of random
motion and heat transfer in the dispersed phase were
investigated. A comparison of the calculation results
with the results of DNS and experiments was pre-
sented.
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Appendix A

A detailed derivation of the expression for proba-
bility density function of transition of a particle in a
turbulent flow (Eq. (18)) is presented below.

One can define the probability density function of
transition of a particle in the space over coordinates,
velocities, and temperatures as

Gp(x, V7 @, t\xo, Vo, @0, to)
= 0(x — Ry(1))o(V = V,(1))6(6 — Op(1))d(xo
= R,(1))0(Vo — Vyp(1))0(O0 — Op(t0)). (A1)

Function (A.1) describes the change in the position
R, (1), velocity V() and temperature ©,(¢) of a particle

during the time interval ¢ —¢. The initial values of
these quantities at #, are Ry(ty), V,(t), Op(to), respec-
tively.

The equation for function (A.1) may be obtained
with the help of Egs. (1) and (2)

oG, 0G, 0 Ui(x,t) + W, =V,
a Vi T {G" 7,
6 @1‘(x, t) — @p o
+36 {Gpr—o =0. (A2)

The initial condition for Eq. (A.2) has the following
form:

Gy(x, V,0,t|x0, Vo, O, t9)
= 5(x — x0)3(V — V)3(O — ). (A3)

One can derive the closed solution of Eq. (A.2) with the
initial condition (A.3) in the following form:

GP(x7 Va @7 t|x07 V07 @05 t())

t— 1 t— 1
:exp(3 . O)exp( 100)5{x—x0

+1,(V=Vy) —(t—to)W— /tt U(Rp(s),s)ds}

t— 1 t— 1
Xé{Vexp( . 0)—V0+W(1—exp( . O))

e < _l ‘s) U(Rp(s),s)ds}

Tu Ji1 Ty
J— t —
x{@exp(t to)—@o—l/ exp(—to S)
Ty To Jiy To
X O(Ry(s),5) ds}. (A4)

The expression for reduced probability transition func-
tion of transition of the particle describes the displace-
ment of the particle at the distance x — x, during time
interval ¢ — t;, and can be obtained from (A.4) in the
form

Gy (x,tx0, Vo, 1)

:/d@/dVGP(x7 V7@7[|x07V07@07t0)

:5{x_xO_-EuVO(1—eXp<_l;lo))
_ {(r—to)—ru(l_eXp(_t;ut(J))}W
[l minsn).
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In the system of coordinates driven with mean velocity
of fluid phase U, we write down

U(x,t): U0+u(x,t), V(): U0+W+V0. (A6)
The above expression (A.5) with acceptance of (A.6)
yields Eq. (18).
Appendix B

A detailed derivation of the formula for gas velocity

fluctuations along the trajectory of a particle is pre-
sented. We obtain from Egs. (18), (19), (21), (22)

<#>W§@):1/dw%/dk¢@wEﬂk~D<eXp{—4n

X {1—exp (T%)]kwo—iéWk—i/oi ds
x [1 —exp (—ér_us)}k~u(Rp(s),s)}>.

After averaging expression (B.1) over an ensemble of
turbulent realizations we approximate the velocity fluc-
tuation of the carrier fluid along the particle trajectory
u(R,(s),s) = u(s) by a random Gaussian process. Its
characteristic function is

(oo [[atmia})
_ exp{ _%@tﬁ)/(;f ds, _/Oi ds, V",

Mm—mmmmmﬁ, (B2)

where over index n should be summation. The function
g,(s) is chosen in the form

alo) =1 -exo (=57 ) |

After integration of the exponential term in the right
part of (B.2) we can write the result

<wp{{éé&@ﬁwwﬂk}>

—exp (- 3B, (B3)

where the expression for (¥?(¢)) coincides with (27).
Integration of (B.1) over the space of velocity
fluctuations of particle with initial velocity distribution
of particle (21) leads to formula (26). The correlation
functions of fluid phase temperature along the trajec-

tory of a particle in (25) are calculated in a similar
way.
Appendix C

The time of dynamic relaxation of particles of
spherical shape is defined according to the formula

L _Apdy 1

‘3 p, v ReyCp’

Cp = ﬁ(l 4+ 0.179Re>* + 0.013Re,).
Re, P P

The ratio between temperature and dynamic relaxation
times of particles is calculated as follows

Ty CpRe, Cp 32

r_,,:g: 24 ¢ Nu’

(C.1)

The particle Nusselt number is a function of Prandtl
number and the particle Reynolds number (Ranz-
Marshall correlation)

Nu =24 0.6Re} Pr>. (C.2)
In the calculation of the particle Reynolds number we
take into account the sedimentation velocity of the

particle and amplitude of relative velocity fluctuations
between the particle and the carrier phase

Rey =ReS[(1— )2 + 0], Rl = udy/v,

a= W/, f=

3
Zu?/?a.
i=1

For the Stokes regime of flow around the particles
Re, <1 we have with expressions (C.1) and (C.2) the
following relation:

{=(3/2)Pr(cp/cr). (C.3)

It is seen from expression (C.3) that an increase in the
ratio between the heat capacities of the material of the
particles and carrier phase, as well an increase in
the Prandtl number of the fluid, leads to an increase in
the thermal relaxation time of particles in comparison
with the time of dynamic relaxation.

Appendix D

Let us estimate the turbulent integral macroscales of
velocity and temperature fluctuations of fluid phase on
the basis of a spectral representation of space-time
Eulerian correlation functions in the von Karman ap-
proximation
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. E, 4 2 k
Eu(k7é):_gX7eXp(_é—)7 X =

ke ™ (1 4x2)177° T2 (k) ki’
(D.1)
~ Ey 3 & k
E = — =
0( ’ ) k() (1+y2)11/6 €xp ]—E(k) ) k()’
(D.2)

where
Eu = <u[u,->/2, E() = <6?>

The turbulent spectra (D.1) and (D.2) have the fol-
lowing normalization:

Ey :/l:?g(k,O)dlg E, = /E,,(k70)dk. (D.3)

The characteristic time scales of turbulent eddies, the
size of which is of order ~ k™!, are terminated by cas-
cade transfer of energy along the spectrums, and look
like [32,33]:

T, (k) = ¢ \P3K253,

From normalization restrictions (D.3) we find the val-
ues of constants g,q in the distributions (D.1) and
(D.2)

g=2/B(5/2,1/3), q=2/B(3/2,1/3),

where

0 txfl
B(XJ):/O mdl‘

is the Beta function.

From assumed universal behavior of the spectra of
velocity and temperature fluctuations in the inertial
range x > 1, E,(k,0) = Cxe*k~*, and in the inertial-
connective range y > 1, Ep(k) = Cyege, ' Pk, we
receive expressions for the scales kg,ky in (D.1) and
(D.2)

CK 3 &y
) wm

CB 2/3 (898;1/3)3/2
ky = <_) e (D.4)
q E;

where Cyx,Cp are Kolmogorov and Batchelor con-
stants.

The following expressions for one-dimensional space
macroscales of velocity and temperature fluctuations of
the continuous phase are found as a result of integration
of spectra (D.1) and (D.2):

3n

. _3n g
T 4E,

—1 4
/k Eu(k,0)dk ==

Le =L
E

B(2,5/6), (D.5)

T

Ly = —
Yo

/k*IEO(k, O)dk:gkiB(l,S/@. (D.6)

From the Egs. (D.4)—-(D.6), we find expressions for ratio
between macroscales of temperature and velocity cor-
relation functions

ﬂ_g g 5/23(175/6) %R 3/2
LE_3 g B(275/6) Cp ’
(D.7)
R=Fo b
&y Eu

The integral time scales of velocity and temperature
fluctuations of carrier phase and the ratio between
them are also established using the spectra (D.1) and
(D.2)

1 © A E
T =— | dk dEE, (k, &) = bg—
E Eu /0 éu(aé) E8u7

V7 B(13/6,2/3)
"G BRI o
fi—g [k [ acEi =0,

_ v B(1/6,2/3)
"G PG 7

The parameters that characterized the internal micro-
structure of velocity and temperature fluctuations in the
Eulerian variables, og = Tgu/Lg, 09 = Tyu/L, are esti-
mated with the help of Egs. (D.5), (D.6), (D.8), and
(D.9).

The Kolmogorov constant is chosen as Cx = 1.65. In
the literature, the values of Batchelor constant vary in
the range Cy = 0.85...1.16. In the present paper we
accept the value Cp = 0.85. The value of parameter R
also changes in the range R = 0.3...1.2. We elected the
estimation R ~ 0.5, which is in agreement with exper-
imental data in [35,36]. For these established constants
we found

L()/LE ~ 04-77 T()/TE ~ 0787 bE ~ 0217

(D.11)
by~ 033 0p~0.52, 0,/ ~ 1.65.
The Reynolds number of turbulence Re; = ul/v is con-
nected with the kinetic energy of turbulent fluctuations
as follows (see, as an example [32]):

20\ E
Re, = [ — I D.12
(3) e (D.12)
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The ratio between integral time macroscale and Kol-
mogorov microscale tx = (v/su)l/2 follows from (D.8)
and (D.12)

TE 3 1/2
;— ﬂE<270) Re;v.

Eq. (D.13) gives the parameter of particles inertia Qg in
the terms of particles dynamic relaxation time and
Kolmogorov time microscale

P E A
P \U3 BeRe;

(D.13)

(D.14)
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